

Waitangi Stream Remediation and Erosion Protection Works – Design Report

Bay of Plenty Regional Council

solutions for your environment

•

Waitangi Stream Remediation and Erosion Protection Works – Design Report

Prepared for

Bay of Plenty Regional Council

: March 2018

PATTLE DELAMORE PARTNERS LTD Level 4, PDP House 235 Broadway, Newmarket, Auckland 1023 PO Box 9528, Auckland 1149, New Zealand

Tel +64 9 523 6900 Fax +64 9 523 6901 Website <u>http://www.pdp.co.nz</u>

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM REMEDIATION AND EROSION PROTECTION WORKS - DESIGN REPORT

i

Quality Control Sheet

Waitangi Stream Remediation and Erosion Protection Works – Design Report TITLE

CLIENT Bay of Plenty Regional Council

VERSION Final

- 16 March 2018 ISSUE DATE
- T01552501 JOB REFERENCE
- T01552501R001.docx SOURCE FILE(S)

DOCUMENT CONTRIBUTORS

Prepared by

1 SIGNATURE

Andrew Dean

Approved by Reviewed by SIGNATURE Daniel Garden Azam Khan

Limitations:

This report has been prepared by Pattle Delamore Partners Limited (PDP) on the basis of information provided by Bay of Plenty Regional Council and SurveyOne Limited. PDP has not independently verified the provided information and has relied upon it being accurate and sufficient for use by PDP in preparing the specification. PDP accepts no responsibility for errors or omissions in, or the currency or sufficiency of, the provided information.

This report has been prepared by PDP on the specific instructions of Bay of Plenty Regional Council for the limited purposes described within. PDP accepts no liability if this document is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM REMEDIATION AND EROSION PROTECTION WORKS - DESIGN REPORT

Table of Contents

SECTION		PAGE
1.0	Introduction	1
1.1	Background	1
2.0	Investigations	1
2.1	Topographical Survey	1
2.2	Geotechnical Investigation	1
3.0	Design	2
3.1	Concept Design Development	2
3.2	Design Criteria	2
3.3	Geotechnical and Slope Stability Assessment	3
3.4	Hydraulic Design	3
3.5	Flow Management during Construction	4
3.6	Draft Construction Sequence	5
4.0	Project Risks	6
5.0	Safety in Design	7
6.0	Programme	7
7.0	Cost Estimates	7
8.0	References	8

Appendices

Appendix A: Geotechnical Assessment of Existing Slopes

Appendix B: Geotechnical Assessment of Proposed Remediation Works

Appendix C: Risk Register

Appendix D: Safety in Design Risk Register

Appendix E: Hydraulic and Hydrologic Calculation Sheets

Appendix F: Engineer's Estimate

1

1.0 Introduction

Pattle Delamore Partners Ltd (PDP) was engaged by Bay of Plenty Regional Council (BoPRC) in November 2017 to undertake investigations and detailed design of erosion protection works for a 50 m section of Waitangi Stream at 341 Spencer Road, Tarawera.

This report outlines the basis of the design, assumptions, risks and cost estimates and should be read in conjunction with the drawings, schedule of quantities and technical specifications for the works.

1.1 Background

Lake Okareka discharges to the headwater of Waitangi Stream via a pipeline constructed in the 1960s. This pipeline was constructed to mitigate against flooding at Lake Okareka caused by elevated lake levels.

The pipeline has historically discharged up to 240 L/s into the Waitangi Stream. The pipeline was upgraded in 2014 to discharge up to 360 L/s, and since June 2017 a temporary above ground pumped system has increased the discharge flowrate to 500 L/s.

Since increasing the flow from Lake Okareka to the Waitangi Stream, BoPRC has been monitoring the stream for hydraulic, ecological and erosion effects. BoPRC have identified approximately a 50 m section where the stream bed has been eroding. This section is immediately downstream of a 1,050 mm diameter culvert over a shared right-of-way at Waitangi Bay, accessed from Spencer Road. The streambank is steeply incised in this section, with banks up to 6.0 m high. Stream bed degradation is also impacting on the stability of the stream banks. The house and garage at 341 Spencer Road are in close proximity to this section of the stream on the true left bank, with some of the residential dwelling structures coming within 1 to 2 m of the top of the streambank.

2.0 Investigations

2.1 Topographical Survey

A site survey has been carried out by SurveyOne Ltd on 13 November 2017. This data has been utilised in the design and incorporated into the drawings.

2.2 Geotechnical Investigation

A geotechnical investigation at the site was carried out by PDP on 14 December 2017.

This investigation included a walkover of the site, five hand-augured investigation boreholes and 10 Dynamic Cone (Scala) Penetrometer tests.

The field work identified existing instability and slippage on both sides of the stream bank. Subsequent slope stability modelling utilising results from the onsite investigation and detailed topographical survey indicated that the 6.0 m high streambank below the buildings at 341 Spencer Road was marginally stable, with a factor of safety of approximately 1.0 (which is below the generally accepted safe range of 1.4 to 1.6).

Further details of the geotechnical investigation and modelling are presented in a technical memorandum dated 21 December 2017 included as Appendix A. Further details of subsequent geotechnical modelling and analysis of the proposed slope stabilisation works are outlined in Section 3.3.

3.0 Design

3.1 Concept Design Development

PDP developed an initial concept design for stream bank and bed erosion protection works which was issued to BoPRC for discussion on 21 December 2017. However, following completion of the geotechnical investigation and slope stability analysis, PDP identified that the existing dwelling at 341 Spencer Road was at risk of slope instability and the stream bank protection works proposed at that time did not satisfactorily mitigate this risk.

Therefore, following further discussion with BoPRC including a teleconference on 10 January 2018 with Andy Bruere and Niroy Sumeran from BoPRC, Darrell Holder from Rotorua Lakes Council (RLC) and the landowner of 341 Spencer Road, Richard Armstrong, PDP was instructed by BoPRC to modify the design to incorporate slope stabilisation works to mitigate risk of slope failure and damage to the existing dwelling and outbuildings. The design outlined in the following sections has been undertaken on this basis.

3.2 Design Criteria

Based on discussion with BoPRC staff, key design criteria and controls which have been adopted are outlined as follows:

- a) Provide erosion protection to the toe of the stream bank to prevent further erosion of the stream bed and adjacent banks;
- b) Provide for stream bed protection to eliminate further stream bed degradation;
- c) Stabilise the slope of the stream banks to provide an adequate Factor of Safety against potential slope failure in the long term (i.e. 1.4 to 1.6);
- d) Utilise rip-rap and gabion baskets, if possible, in preference to a culvert extension, concrete structure or sheet piling; and

e) Access to the site is difficult and consideration must be given for access for machinery, placement of materials and temporary flow management during construction.

3.3 Geotechnical and Slope Stability Assessment

Stabilising the slope either side of the stream has been achieved by a combination of the following:

- a) Raising the stream bed to support the erodible bed and flattening the steepness of the stream channel; and
- b) Placement of gabions baskets against the steep slopes to provide a gravity retaining structure.

The proposed design has increased the Factor of Safety against slope failure across the extent of the proposed works from around 1.0, to around 1.4 to 1.6.

Details of the slope stability modelling for the proposed completed stream bank remediation works is outlined in Appendix B.

3.4 Hydraulic Design

The erosion protection works have been designed in accordance with the Bay of Plenty Regional Council Hydrological and Hydraulic Guidelines (2012) (BoPRC Guidelines). In accordance with Section 4.5 of the BoPRC Guidelines, the design requires that a passage for the 20 year Average Recurrence Interval (ARI) flow must be maintained. In addition, an allowance for climate change effects has been made in the calculation of this design flow.

3.4.1 Design Flow

A design flow of 3 m³/s (20 year ARI event) was calculated using the modified Rational Method in accordance with Section 5.5.3 of the BoPRC Guidelines. This flow was calculated for the section of Waitangi Stream downstream of the private road at Waitangi Bay. Calculation of this design flow is included in Appendix E.

Under most conditions discharge from Lake Okareka will contribute most of the flow in Waitangi Stream. BoPRC has nominated a maximum flow of 500 L/s for the discharge from Lake Okareka. It is expected that base flow in the Waitangi Stream will be in the order of 5 L/s in summer and 30 L/s in winter (River Lake Ltd, 16 October 2017). A conservative maximum baseflow of 100 L/s has been assumed for design purposes.

A 1D hydraulic model was developed to assess velocity, flow depth and flow regime in the Waitangi Stream in the location of the contract works. This model was developed using the Hydrologic Engineering Center's River Analysis System (HEC-RAS) software (Version 5.0), produced by the US Army Corps of Engineers.

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM REMEDIATION AND EROSION PROTECTION WORKS - DESIGN REPORT

4

The results of this analysis were checked using manual calculations based on energy grade methods. HEC RAS outputs for velocity, flow depth and other parameters are included in Appendix E.

3.4.2 Rip Rap Sizing

Rock rip-rap has been designed to line the channel bed. This rip rap layer has been sized in accordance with Figure 7.1, Section 7.5.2 of the BoPRC Guidelines. 300 mm median diameter (D_{50} = 300 mm) and 400 mm median diameter rip rap (D_{50} = 400 mm) has been used for the base of the channel.

The depth of rock rip rap in the base of the channel as specified on the drawings is 1.5 times the median diameter. Rip rap is to be placed on a Bidim A44 geotextile, overlying compacted aggregate to minimise erosion of fine grained material.

3.4.3 Erosion Protection at Bends

There is a slight bend in the channel at or about Cross Section B in the Drawings. In accordance with section 7.5.2 of the BoPRC guidelines, a factor of 4/3 has been applied to calculated velocities for this section, and rip rap sizing carried out accordingly for additional protection (Figure 7.1, Section 7.5.2 of the BoPRC Guidelines).

3.4.4 Drop Structure

As outlined in Section 3.1 the channel invert has been raised to the order of 2.0 m above the original stream invert to increase slope stability and reduce hydraulic grade in the section of the stream adjacent to the buildings at 341 Spencer Road. A drop structure has been designed to return flows to the base level of the downstream channel without causing scour erosion at the base of the drop, or further downstream. This drop is approximately 2.1 m.

The drop structure has been designed using the methodology outlined in the US Department of Transportation publication 'Hydraulic Design of Energy Dissipators for Culverts and Channels' (Third Edition, July 2006). Two successive drops have been used.

Design calculations for this structure are included in Appendix E.

3.5 Flow Management during Construction

As shown on the drawings, a 450 mm diameter StormBoss[™] polypropylene pipe is to be installed in the channel. This pipe will be used to carry flows during the construction period, and shall be blocked-off following. It will remain in-situ to provide bypass flows during maintenance work if required.

The inlet arrangement to this pipeline, and shut-off system will need to be confirmed during construction.

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM REMEDIATION AND EROSION PROTECTION WORKS - DESIGN REPORT

3.6 Draft Construction Sequence

The contractor will be required to prepare a detailed construction sequence and methodology to be approved by the Engineer.

The following draft construction sequence may be used by the Contractor as a guide as to the construction sequence.

- 1. Bypass stream flows around the Work Site:
 - Request that the Principal closes the valve on the Lake Okareka
 Pipeline to shut off the majority of the flow in Waitangi Stream for a
 period to be agreed with the Principal which they will determine
 based on current lake level and forecast rainfall;
 - Install the 450 mm diameter polypropylene bypass pipeline as shown on Sheet 102 of the Drawings (T01552501 – DWG-102) and establish erosion proofing at outlet;
 - Remove temporary erosion controls (i.e. plywood and steel warratahs) from the waterway immediately prior to bulk filling;
 - Carry out bulk filling of the streambed (compacted GAP65 aggregate) to establish the foundation for the gabion structures and rip rap.
- 2. Maintain the bypass system for a period of 2 weeks to allow for settlement of the placed fill.
- 3. Check finished levels and carry out any further filling following settlement of the placed aggregate.
- Construct the drop structure as shown on Sheet 205 of the Drawings. This will include excavation using small excavator (approximately 1.5 tonne) and backfilling with compacted aggregate to form the lower drop structure.
- 5. Work upstream to construct the cross sections as shown on the Drawings.
 - Level and prepare the surface and lay geotextile.
 - Place, adjust and secure gabions.
 - Fill gabions with specified gabion rock. Where the adjoining gabion has not yet been placed, the end diaphragm should be left empty and open to allow joining to be carried out once the next gabion is in place. Close and secure rock filled structures using stainless steel rings (maximum 150 mm centres).
- 6. Carry out remaining compacted backfilling behind gabions.
- 7. Place rip rap in channel.

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM REMEDIATION AND EROSION PROTECTION WORKS - DESIGN REPORT

- 8. Construct the culvert headwall as shown on Sheet 206 of the Drawings.
- 9. Block-off/decommission temporary flow bypass pipeline.

4.0 Project Risks

Project risks are outlined in the Risk Register included in Appendix C. Key project risks are:

- a) Health and Safety risks during construction. This risk will be mitigated by careful Contractor selection and ensuring that appropriate safety plans are in place and all method statements are carefully planned. Monitoring of the Contractor's health and safety systems during the project will also mitigate this risk. Access to the existing dwelling at 341 Spencer Road will also need to be restricted while the works are undertaken.
- b) **Damage to private property during construction.** This risk will be mitigated by clear delineation of the Contractor's working area.
- c) Short term slope stability failure during construction. This risk will be mitigated through project sequencing (carrying out filling of the streambed first), minimising to excavation in design and during construction, and monitoring of slope stability and protection measures during construction.
- d) **Long term slope stability failure.** The contract works have been designed to provide a suitable long term factor of safety against slope failure. This aspect is outlined in Section 3.0.
- e) Fill material mobilised by flow and transported downstream. All channel linings have been designed to avoid mobilisation of material during design flood flows. If fill/rip rap material is mobilised, deep pools have been included in the drop structure at the downstream end of the contract works which will collect a volume of mobilised material. The stream should be inspected by BOPRC periodically and after high flow events for erosion damage and mobilisation of material, and repairs/reinstatement carried out as required.
- f) Erosion downstream of works. An engineered drop structure has been designed to ensure downstream flow velocities are minimised.
- g) Stream vanishes at low flows flows through rip rap and gabions on stream bed. Given the size of bed material required for erosion protection to accommodate flood flows, low flows in the Waitangi Stream may flow through the rock/gabions and not be visible as surface flow. If this occurs regularly, and is problematic, weirs could be constructed to raise the water level during low flows.

- h) Continued eroding of stream bed under placed rip rap. If streambed erosion persists in some locations due to changing flow conditions or other factors, rip rap can be replaced with reno mattresses to provide increased protection where required.
- i) Difficulty sourcing larger boulders and rip-rap material. If suitable large boulders cannot be sourced locally these may need to be imported at additional cost. If this occurs, there may be scope to substitute gabion baskets in place of large boulders in some locations.
- j) Future access for maintenance. The works will not compromise existing machinery access to this section of Waitangi Stream; however will not improve maintenance access.
- k) Resource consenting and lwi support. BoPRC has applied for resource consent for the works under Section 330 of the Resource Management Act (Emergency works). BoPRC understand that they are undertaking the works prior to securing resource consent(s) at their own discretion and risk.

5.0 Safety in Design

A safety in design register for the works is included in Appendix D. Key safety in design aspects include:

- : Positive identification of services prior to commencing work;
- Carrying out bulk filling of streambed initially to increase slope stability before carrying out any works on the slopes;
- : Monitoring of slope stability during construction; and
- : Engineer review of Contractors Health and Safety Plan and Construction Methodology.

6.0 Programme

- : March 2018 Tender and award of contract.
- : Early March 2018 Contractor to commence bulk filling in streambed.
- : April 2018 Completion of works.

7.0 Cost Estimates

An Engineer's Estimate for the works is included in Appendix F. All costs are exclusive of GST.

It should be noted that actual construction costs may vary from this estimate on the basis of competitive bidding, market conditions, inflation of bids, and other

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM REMEDIATION AND EROSION PROTECTION WORKS - DESIGN REPORT

factors. It should also be noted that in this case the site constraints (limited access, working areas and other challenges) could further influence actual construction costs.

The Engineers estimate for the contract works is **\$315,000 excl. GST**. This estimate includes a 10% contingency sum.

8.0 References

- River Lake Limited, Memorandum from Keith Hamill to Andy Woolhouse, Subject: Lake Ōkāreka overflow, Waitangi Stream: Ecology effects of increased flow. Resource consent application CH17-00717, dated 16 October 2017.
- US Department of Transportation, 'Hydraulic Design of Energy Dissipators for Culverts and Channels'. Hydraulic Engineering Circular No. 14, Third Edition, (Publication No. FHWA-NHI-06-086, July 2006).

Appendix A Geotechnical Assessment of Existing Slopes

INVESTIGATION	Geotechnical Investigation	PROJECT	Waitangi Stream Erosion Protection
CLIENT	Bay of Plenty Regional Council	PROJECT NO	T01552501
CLIENT CONTACT	Andy Bruere	PREPARED BY	Noel Kelly
CLIENT WORK ORDER NO/ PURCHASE ORDER		SIGNATURE	OKelly
		DATE	21 December 2017

1.0 Introduction

Pattle Delamore Partners Limited (PDP) have been engaged by Bay of Plenty Regional Council (BOPRC) to carry out detailed design of erosion protection for a section of Waitangi Stream at Waitangi Bay, Lake Tarawera. Waitangi Stream is steeply incised with streambanks up to 6.0 m high in the location of the proposed erosion protection works. There is a house and garage in close proximity to this section of the stream on the true left bank, with the structure coming within 1-2 m of the eastern bank of the stream at its closest point. The site layout is shown on Figure 1, Appendix A.

PDP has carried out a preliminary desktop study, including an initial slope stability assessment of the streambanks in accordance with their scope of work (outlined in Section 2.0). Based on this assessment, it was determined that a geotechnical site investigation was required to further investigate the slope stability of the stream banks, and the associated risk to the proposed contract works and adjacent property.

2.0 Preliminary (Desktop) Analyses

Preliminary slope stability analysis outputs are included in Appendix B. These preliminary analyses examined the existing stability of the bank at both sides applying parameters relevant to the soil indicated to be present on site.

Analyses indicated that both sides of the bank were marginally stable, both exhibiting a Factor of Safety (FoS) of approximately 1.0 (the typically acceptable FoS for long term stability of a slope is 1.5 to 1.6). Further analyses, examining the effects of erosion protection at the toe indicated only marginal improvement to the stability of the slopes, an insufficient improvement to infer satisfactory long term performance.

3.0 Site Walkover and Investigation

Following the preliminary analysis findings, a site investigation was deemed necessary to provide confidence in any further analysis and design of erosion protection and remediation measures. The ground investigation was subsequently scoped and carried out alongside a walkover survey on December 14th 2017. Works on this day comprised the following:

- A walkover survey of the site noting any existing instability and slippage;
- Five hand-augured investigation holes ("Hand Augers") to depths of between 1.0 m bgl and 4.0 m bgl to investigate soil types and depths on site; and
- 10 Dynamic Cone or 'Scala' Penetrometers (DCP) to depths of up to 4.0 m bgl to investigate soil density.

An annotated site plan is included in Appendix A and draft investigation logs are included in Appendix C. Results of the walkover survey are shown on Figure 1, with sketch cross-sections A-A', B-B' and C-C' also enclosed. The most pertinent points to note from the investigation are as follows:

- A significant proportion of the existing banks are currently experiencing instability, with shallow slips noted on both sides of the stream. In particular, a significant area of slippage has been noted approaching the crest of the slope, immediately behind the adjacent residential property.
- The existing slopes adjacent to the property and elsewhere are steep, approaching 65° 85° in places.

The layout of the intrusive soil investigation is shown on Figure 1. The investigation encountered the following:

- Alluvium and debris: Typically light grey silt with varying content of fine sand and trace gravel. Encountered up to 1.6 m.
- Volcanic Ash: Typically yellow brown fine sandy silt, encountered as soft or loose. Ash was encountered from surface or underlying alluvial layers to end of hole (EoH) at all Hand Auger locations.
- DCPs were also carried out at locations along the stream bed to establish the depth of loose or soft material overlying a competent bearing stratum. These encountered soft material to depths of between 600 mm and 2.10 m bgl.

4.0 Conclusions and Recommendations

- A preliminary slope stability analysis of the existing slope banks, applying estimated soil parameters, concluded that slopes at either side of the stream are currently marginally stable. This analysis indicated a less than acceptable Factor of Safety for long term stability of the slopes.
- Soil information and testing carried out during the subsequent investigation confirmed that the parameters applied during the preliminary investigation were appropriate to the soils in question.
- The conclusion of the preliminary analysis and site investigation is confirmed by the observation of numerous shallow slips on the banks of Waitangi Stream. The age of the observed failures is unknown. The age/timeframe of slope failures is often difficult to assess accurately without historical survey information, photographs or other references.
- Of particular note are the risks and possible implications for the property to the east of the stream (true left bank). As the slope currently stands, there is a possibility of further slope failure which may progress towards and possibly undercut the structure(s).
- While proposed erosion protection measures at the toe of the slopes may prevent any further destabilising removal of toe material, such measures will not significantly improve the overall long-term stability of the slopes.

On this basis, PDP recommend the following:

- To mitigate risk of instability due to excavations at the toe of the slopes, any toe erosion measures shall be installed in a sequential manner, as outlined in the Technical Specification for the works.
- The implication of long-term instability of the banks should be considered. The risk of instability may be acceptable at locations removed from any structures; but less so adjacent to the residential property to the east of the stream.
- On this basis, it is recommended that adjacent to the residential property, retaining measures (such as sheet piling, significant gabion structure, mass-blocks etc.) or alternative solution (such as raising of the stream bed, construction of a culvert structure or slope re-profiling) be incorporated into the erosion protection works.
- Such remedial measures will require further feasibility assessment and design. Following assessment, a combination of such measures may be deemed appropriate.

Limitations

This memorandum has been prepared by PDP on the specific instructions of Bay of Plenty Regional Council for the limited purposes described in this memorandum. PDP accepts no liability to any other person for their use of or reliance on this memorandum, and any such use or reliance will be solely at their own risk.

The findings in this memorandum are based on field observations and a series of hand auger holes and Scala Penetration testing at the site. Engineering geological conditions at the site have been interpolated based on this information using engineering geological experience. The interpolated conditions and parameters cannot be guaranteed to be accurate.

Slope stability analyses and subsequent recommendations have been made on the basis of preliminary information and should not be relied upon for detailed design of retaining structures. The final designer(s) may consider further investigation to be necessary to inform detailed design and construction.

Appendix A: Site Plan and Sections

DUDFIELD BRYCE

 \bigcirc

 \bigcirc

DUDFIELD BRYCE

2

Appendix B: Slope Outputs

PATTLE DELAMORE PARTNERS LTD

FIG2 SEC2 E.DOCX

BAY OF PLENTY REGIONAL COUNCIL

FIG3_SEC2_W.DOCX

BAY OF PLENTY REGIONAL COUNCIL

FIGURE 4: WAITANGI STREAM: PRELIMINARY SOPE STABILITY ANALYSIS [EAST – WITH TOE PROTECTION]

---- BAY OF PLENTY REGIONAL COUNCIL

Appendix C: Investigation Results

CLENT: BURZC UDCATION: Corner Have DATE: 14/12 17 DATE BACKFILLED: LOGED BY: SHEET 1 OF 1 DESCRIPTION OF SOIL BESCRIPTION OF SOIL DESCRIPTION OF SOIL SIGN 11/14 grey. FIRM; dry. Art., Sheet 1 grey. FIRM; dry. Art., Sheet 2 grey. Sheet. LP dry. catho punce greeks m.c I I'M increasy great cath. Greatly Sheet. LP dry. catho punce greats one punce - Shire Jeff Catol 2 great. Soil op unice t great. Sheet 1 grey. Catol Chape bo 1.5th grey. Fire Sheet 1 grey. Fire Sheet 1 grey. Fire Sheet 1 grey. Sheet 1 grey. Fire Sheet 1 grey. Art. Sheet 1	PATTLE DELAMORE PARTNERS LTD PIT NO. HA_O)									
DATE 14/12 17 DATE BACKFILLED: LOGGED BY: SHEET 1 OF 1 DESCRIPTION OF SOIL DESCRIPTION OF SOIL DESCRIPTIO	CLIENT: BUPRC LOCATION: Corner Have									
DESCRIPTION OF SOLL DESCRIPTION OF SOLL SUT : 1. 1. 4 grey. Firm; dry. Art., Shre sody stat. date grey. Firm shrft dry fasternan addine M. C. SAND; black. LP ay, catho punce greets mc 1. I'm increasy greet actual . Gravely Sand; caepergulars aggies LP Mast greets or firm; and opping at 1 Urache 2 grads. Sod opping at 1 Urache 2 grads. Sod opping at 1 intervinitent langess of (coorman) m. c. SAND; dut grey. Fire Sady stat. That grey 2.0 Intervinitent langess of (coorman) m. c. SAND; source clay; yellow 5 rown. Firm; Mast wet Slightly plath. As per 2 com. Cause 4.0 Cause 4.0	DATE: 14/12/17	DATE BACKFILLED:	LOGGED BY:		SHEE	SHEET 1 OF 1				
Sur ; lyth grey, Firm; jdry. Art., shire sody sur; jdry. Art., in a sody sur; jdret grey. Sim. shift dy factore a chemic M.C. Sans; bleck. LP dy. catho punce greyels m.c. I in increasy greet actual. Greening Sans; ace provident or punce to punce greets m.c. I in increasy greet actual. (Leak 2 great. Sod 0 punce to punce size. Celor chape to 1.5th grey. M.C. Sans); due grey.		DESCRIPTION OF SOIL	GRAPHIC LOG	DEPTH (m)	SAMPLE DETAILS	TESTS	MATER OBSERVATIONS			
Shre sody sit; date gray. Strom shref dry factore on chemic M.C. Saws; black. LP dy. calms punce gravels m.C I. In increasy grad actual. Gravely Saws; care yulian organized (Rake 2 grads. Sod 0 primice 1 Strategies (Rake 2 grads. Sod 0 primice 1 (Rake 2 grads. Sod 0 primice 1	SLT; ly 4 grey, FT	m; dry. Art.	* * *	- 0.0						
M.C. SAWD; Bleck. UP aly, carbo punce greets m.C. I'm increasy greet atult. Gracity SawD; acepeychen cooper LP Mast produce of punce - Subreacted URAK 2 grade. Sod oppinice L gradhe m.c. Size Celar chape to light grey. Intermittent layers of (zoamm) M.C. SAWD; Jult grey Fire Sad yellar core - Layeb or dry. meth van colore. Ama sody Sist with Some clay; yellar brown. Firm; Mast wet Slighty plath. As per 2 com. Cabo Licer Tho GuNE. 4.0 2.0 4.0	shre sady sig; de dig fortheman	re grey. Sim-sh# calme	CREAK FR	- - - 0.5 -	4	- - 28. 				
Grading Sand ; acege y dear of filts Mast a rads of price - surce led (rade 2 glade. Sod 0 primice L grading price size Color chape to light gray M-c sourd ; dull gray M-c sourd ; dull gray Frie Sady surt light gray 2.5 Frie Sad yellow on the some clay; yellow brown - Firm; Marshavet Slightly plate. As per 2 on . Caline Light - Caline - Ca	M-C SAND; blec punce grevels 1.1m increasy gree	M-C.	and	- - - 1.0		- 				
Quere mente Celev chape to light grey. Intermittent layers of (200 mm) M-C SAND : dave grey. Fire Sauly Sut light grey & Fire Sauly Sut light grey & Fire Sauly Sut with some day; yellow brown. Firm; Martimet Slightly plant. As per 2 om. Cal Co Li. on Tro Chine. - 4.0 - 4.5: - 4.5	Grauling Sand; c Mast grads de Weak & gook.	Bruce - Sisra del Sad openice i	10 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	- - 1.5 -			<i>\$</i> *			
M-C SAND : don't gray Fore Sandy Sitt light gray - Layed or dry-ment was coloure - Layed or dry-ment was coloured or dry-ment	Querte mage to	Mers of Goomm)	D	- - - 2.0		-				
- Layer or day-most new colorie fine sondy stor with some day; yellow brown. Firm; Main wet slightly plant. As per 2 com. Chippe. - 4.0 - 4.5 - 4.5 - 4.5	M-CSAND: DI	whe gry . Typht grey		- - 2.5 -						
yelion Brown. Firm i Martinet slightly plath As per 2.000 4.00 The GUNE. -4.0	- LAYED OR JAY A MA Sady SIDT &	with some day;	- general/Manager	- - 3.0		-				
As per 2 com The 4.0 CONF.	slightly plate	. Firm; Marthe	And	- 3.5		3				
GUNE.	As per 2 or			- - - 4.0		.7				
	Kong Ch	NE		- - - 4.5						
Notes: Scola G-4m. Notes: Scola G-4m. <u>KEY</u> Groundwater level Seepage inflow Coordinates: <u>KEY</u> <u>Groundwater level</u> <u>Seepage inflow</u> <u>KEY</u> <u>Groundwater level</u> <u>Seepage inflow</u> <u>Seepage inflow</u> <u>See</u>	Notes: Scola G-4	127.	KEY Grout Seep	ndwater level age inflow	Metho Datum Groun Coord	nd: Hand Au n: d Level: inates:	uger			

	PATTLE DELAMORE PARTNERS LTD LOG OF HAND AUGER PIT NO. JOB NO:								NO. BNO: HA. OZ			
	CLIENT: BUPPEC		LOCATION:	B	lehnd	god)er	sted				
	DATE: 14/12/17	DATE BACKFILLED:	LOGGED BY	r: C	F	£.	SHEET	1 OF 1				
		DESCRIPTION OF SOIL	GRAPHIC LOG		DEPTH (m)	SAMPLE	DETAILS	TESTS	WATER			
0	FINE-MEDIUM SAN	10; oraje bra- speciel	() () () () () () () () () () () () () (10000	0.0							
7.2	- sitty sed ; Steck	argaic as per Ha al	***	2	- 0.5 		*					
s c	SILT; light grey. S	has mast DARIS	in the second se	NX .	- - - 1.0							
. 4	dry Mon ellos e	ry cosety pierd.	· 'at	T.X.			•					
2	fine inedian Se Olg. Firm-shel; Ottentat	mast, slyly plast	C 2.1		- - - -							
ų	SAND. medium. Pumice	tythe srey, dense		Mai	- 2.0 							
6	SAND EFEMED Steled croye. L Mast-met	eony proceed;	· ·	-	- - - 2.5 -							
٦	1.9m Colow Cha	ge to light greg.		-	- 3.0 -							
	CH @ 2.01 GUNE	~ TD		-	- - 3.5 -							
					- - - 4.0		2					
				-	3	1						
				-	- 4.5 - - -							
-				[- 							
	Notes:			Groundv Geepage Grab sar	vater level e inflow mple		Method: Datum: Ground I Coordina	Hand Auge _evel: ites:	r			

PATTLE DELAMORE PARTNERS LTD	LOG OF HA	ND AUGEI	R	PIT NO	HQ-1	03
CLIENT: BOPEC		LOCATION:	Behind	1 Sleep	och	
DATE: 14/12/17	DATE BACKFILLED:	LOGGED BY:	CETA	J. SHEE	T 1 OF 1	
	DESCRIPTION OF SOIL	GRAPHIC LOG	DEPTH (m)	SAMPLE DETAILS	TESTS	WATER
 Silt with some Soft, dry; A. Slightly organic Sm Firm Consister Silt with Mm fire gravel. I. Shift. dry. if gravels one P Linu soft horizon (300 Som sy sice with white streaded a dry-mask. br Gravels are s M- 15mm. So pumire. Ct as ary sub mine horizon of Sad ; orge sm Sad is pumed e. 10 5.0- 718 	Fre said ; brown, able (non above). wy offer said e shi grey. From. (in chestice, in chestic	x x x X ON HOME CHARTER AND A THE AN	-0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -2.5 -3.5 -3.5 -4.0 -4.5 -4.5 -5.0			
Notes: CUME Hok clipe bereen	1.5-2.0m.	KEY Ground Grab si X PID Re	dwater level ge inflow ample ading (ppm)	Method Datum: Ground Coordin Filenam	: Hand Auge Level: ates: e: Hand Auge	er er (5m)

PATTLE DELAMORE PARTNERS LTD	LOG OF HA	ND AUGEF	2		HA-0	4		
CLIENT: BUPPC		LOCATION: 13	DANK T	UE				
DATE: 14/12/17	DATE BACKFILLED:	LOGGED BY: 🕑	FINT.	SHEE	T 1 OF 1			
	DESCRIPTION OF SOIL	GRAPHIC LOG	DEPTH (m)	SAMPLE DETAILS	TESTS	WATER		
Sitty fire son gravel; pin black. Firm plashe. S medium are fire on fire clar doge shedted about cicy earl 1.0 to eye firt sands field Gw@ G33 end of	d with minor high grey specided is atwated; non and is fine- pumile; grads for care to pumile. to a care to utto: minor algos m 201 at age.		-0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5	K.				
			-					
	• 5.1							
Notes:		KEY Ground Seepag Grab sa	water level ge inflow ample	Method Datum: Ground Coordin	: Hand Auge Level: ates:	r		

.

PATTLE DELAMORE PARTNERS LTD	LOG OF HAND AUGER								
CLIENT: BCP2C		LOCATION: Nerth Serk Strugg.							
DATE: 14/12/17	DATE BACKFILLED:	LOGGED	BY: ÇC	~	SHEE	T 1 OF 1			
	DESCRIPTION OF SOIL		GRAPHIC LOG	DEPTH (m)	SAMPLE DETAILS	TESTS	WATER OBSERVATIONS		
Mc SAND WILL MC SAND WILL Grag · Eccze	y steded ocyc a diluch mast,) slylly plestic sure sig y whith , schooled . pomce arad	え 、 ドンドン アッキー		.0 .5 .0			Failve		
8 F.M. SANDL gry steh or Tighty palle ore provid Mid rege Salasted. dictut F.M. Sand with so brow. Firmi > Fire Janey Siler; all of all	R ere silt i suf oge yella as see of Must Gruey sirceded - course soft. re silt gulla nash yellow grey.			0 5 3.0 3.5					
Soft: Saturday JAND as pro CONNER Hole Soils well the	TD. See 10 cely			4.5	. v				
Notes:			KEY Groundwat Seepage ir Grab samp PID Readin	er level iflow le g (ppm)	Metho Datun Groun Coord Filena	od: Hand Aug n: d Level: inates: me: Hand Aug	ter ger (5m)		

& to

100 100 100

i gir

No. No.

El .

-

Waitangi Str	eam 14/	12/201	7	1. 9							8.0		
Location	H4_03	63	HA. 04	04	T4	TS	TS	HA_0	HA_07	HAUZ	HA-OL	72	1.
Start m bgl	0	200	0	2m	-	- 4	- city	0	2	0	2	6	
0	-	2	Ø	5	King.	- 23	1. 1.	4	-	-	-11	< }	24 - 19 - 4 1
50	OM.	1.00	1	5	-	ano-		3	7	2	1	- 1	
100	C.V.J	2	1	5		antina.	and the second second	2	2	1	1	1	3
.150	1	2) -	6	-	-	-87**	2	2	4	1	~	lag
200	2	1.	1	2	Mag		seu.	7	1		1		2.00
250	2	2	P	9.	-		de-	1	7	1	1	0	
300	diala	2	1	10	-	-	Real Bar	2	2	13	Na	~	
350	ANA A	2	1	10		() (and the second	2	2	C.F.	1		Toppin St.
400	2	2	3	10	- Guid	-835	1.1.	1	2	24 m	1		12
450	1	2	2		1.2	-	-	2	2	2	VA	~	
500	1))	6	2		7 23	2	2	11	1	2	1
550	1)	1	- * - <u>-</u>	2	W. C	2	2	2	· ·	1	2	1
600	1	7	1		2	7	5	2	4	1,	1	3	1 r
650	2	1	3		2	1	5	2	3	V	1	7	1
700	2	1	2		9	2	AP	2	3	1	í	5	Asses
750	1	Ń	1	-	3	1	B	7	4	1	1 .	4	1
800	2	1	2		4	2	and serve	1	3	7	1	3	4
850	1	2	3		4	1	a service and a service of a se	2	2	1.	1	4	T
900	1	1	2		4	1	1	Dit	2	1	1	4	1/
950	1		1		5	1	(0.5	2	1	1	5	5
1000	2	1	3			2		1	2	1	1	5	3
1050	5	7	2			R	1997 -	7	2	7	ì	9	5
1100	4-	2	2			5		1-	2	2	1		2
1150	5	1	2		-	5	<u>B</u> -	1	2	1	1	-	2
1200	4	2	2			Contraction Page	· ·	2	7	1	1		2
1250	5	ĩ	4	1	100 0	1.19	Some 18	2	1	2	3		5
1300	G	J.	3	1,24			14	2	0	1	2		2
1350	0	5	3	1.152	SC 1 -			2	-1-		2	-sime	
1400	Â	6	6				10	2	1	2	22	1903	1.1.2
1450	2	U	6			1. Syna (* 1. 1. s. 2		2	1	2	2	-	20
1500	2	7	<			1.1		2	1	2	2	P	
1550	2	7	0				· 1200	2	1)	6		100
1600	2	2	>			1	1999) R. 1979	5	1	1.	3.		10
1650	2	2	>				Station States	1	1	1	2		
1700	7	5	6	ан. Э. — С. 2			1.10	1	2	*	6		-
1750		L	2		**	a jeliči. Na seleti	1.1	1	2	L	1	· · · ·	
1/50	1	L	0	0 m 2 y	A			0	2	2	<i>I</i> ,	1	
1800	4	4	5		1. S		45	2	S	1	1		5-5-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1850	3	-	4					1	5	¥	-		
1900	3	2	3		4		- A.S.	.7	3	1	5.	×	
1950	4	2,	3				1211	2	3	1	1		
2000	ù.		2		8 T		1. 1. A.	2	5	2	1	5 S	3

Exposed in stream - : Stream.

but SILT Mun food + clay. yellow craye/14-1 gry. Firm; dilatent. setuded.

Dec.	A CARLES	11										•)	
Scala Record	Scala Recording Sheet Waitangi Stream 14/12/2017												
Location		12/2017					1	1			[T
Start m høl	na-05	Ten											
0	8 1	1									3		
50	8	T. Co											
100	-												
150	-	7	5										
200	- decision	2	* 1										
250		11											
300		7											
350		2											
400		12											
450													
500		2								4			
550		8											
600		4											
650		2											
700		2											
750		2											
800		lie-											
850	-	9					5						
900	-	9											
950		7											
1000		L-											
1050	1 1	T				- ^							
1100		3											
1150		6											
1200		e											
1250		4											
1300	1	C											
1350	2 8	2											
1400		4	*										d.
1450		~											
1500	1	ć											
1550	8 .	e											
1600		<u>.</u>											
1650	1	4						0					
1700	1												
1750	2	4						1					
1800	2	5									1		
1850	1	5											
1900	2	4											
1950	2	2											
2000	1	3											
2000	é	5											

Appendix B

Geotechnical Assessment of Proposed Remediation Works

INVESTIGATION	Waitangi Stream Stabilisation and Erosion Protection	PROJECT	
CLIENT	Bay of Plenty Regional Council	PROJECT NO	T01552501
CLIENT CONTACT	Andy Bruere	PREPARED BY	Noel Kelly
CLIENT WORK ORDER NO/ PURCHASE ORD	R ER	SIGNATURE	OKelly
		DATE	16 March 2018

Introduction

A geotechnical investigation and assessment carried out by Pattle Delamore Partners Ltd (PDP) along a section of Waitangi Stream at Lake Tarawera (Dated December 2017) concluded that that the existing slope gradients along the stream currently possess a significant risk of movement or failure.

Following discussions with Bay of Plenty Regional Council (BOPRC), PDP have designed a remedial solution to address the instability risk, while maintaining flow through the stream.

Geotechnical Design

To satisfy the geometrical, hydrological and environmental constraints of the site, a retaining solution has been proposed which combines the following components:

- Raising the elevation of the existing river bed with rockfill;
- Shoulder reinforcement (regrading) of the existing slopes using granular backfill; and
- Retention of slope reinforcement using filled gabion baskets.

The above components required geotechnical design to ensure economy and safety of the solution.

The geotechnical investigation and assessment carried out by PDP provided an indication of the nature and strength of the soils at Waitangi Stream. A summary of the encountered ground conditions is presented below:

- Alluvium and debris: Typically light grey silt with varying content of fine sand and trace gravel. Encountered up to 1.6 m; and
- Volcanic Ash: Typically yellow brown fine sandy silt, encountered as soft or loose. Ash was encountered from surface or underlying alluvial layers to end of hole (EoH) at all hand auger locations.

Geotechnical parameters for the above materials were applied to analyses and calculations based on a combination of in-situ testing, back analyses of existing slope movements, literature derived values and professional judgement.

Material	Unit Weight (kN/m³)	Apparent cohesion, c' (kPa)	Friction Angle (°)	*Undrained Shear Strength (c _u)
Alluvium	17	1	32	-
Volcanic Ash	16	1	35	-
Rockfill and Granular Fill	19	0	36	-

Note: The alluvial and volcanic material is predominantly granular and very unlikely to exhibit undrained conditions

Slope Stability

In order to ensure the stability of the remedial solution, a number of analyses and calculations were carried out, including slope stability analyses, sliding and overturning calculations. To satisfy seismic design requirements, a design horizontal seismic coefficient (a_{max}) was derived applying the methods outlined by *Earthquake geotechnical engineering practice, Module 6: Earthquake resistant retaining wall design* (MBIE, 2016) and the *NZTA Bridge Manual* (2016), assuming a 1/1000 year return period seismic event. The derivation of a_{max} is provided Appendix A.

A series of slope stability analyses were carried out to assess the stability of the gabion structure against global (rotational) failure and the stability of the backfill sloped behind the gabion structure. Both were examined for a range of conditions, namely average stream flow, (design flood flow 20 year average recurrence interval) and in response to the prescribed seismic event. Graphical outputs of these analyses are presented in Appendix B.

Results of these slope stability analyses are presented in Table 1. Achieved Factors of Safety (FoS) are presented alongside 'target' values, which are based on industry standard guidelines.

Section	Analysis	Factor of Sa Norma	ifety – Static al GWL	Factor of Sa	afety – Static n GWL	Factor of Safety Earthquake*		
		Target	Actual	Target	Actual	Target	Actual	
В-	Global stability	1.5	1.550	1.2	1.489	1.1	1.173	
North	Upper slope stability	1.5	1.531	1.2	1.531	1.1	1.129	
В-	Global stability	1.5	1.587	1.2	1.517	1.1	1.177	
South Upper slope stability		1.5	1.667	1.2	1.667	1.1	1.220	
с-	Global stability	1.5	1.831	1.2	1.768	1.1	1.454	
North	Upper slope stability	1.5	1.482	1.2	1.482	1.1	1.147	
с-	Global stability	1.5	1.482	1.2	1.44	1.1	1.150	
South	Upper slope stability	1.5	1.447	1.2	1.447	1.1	1.081	
D -	Global stability	1.5	1.656	1.2	1.594	1.1	1.252	
North	Upper slope stability	1.5	1.770	1.2	1.770	1.1	1.290	
D -	Global stability	1.5	1.558	1.2	1.533	1.1	1.211	
South	Upper slope stability	1.5	1.699	1.2	1.699	1.1	1.255	
	Global stability	1.5	1.877	1.2	1.771	1.1	1.280	

Table 1: Summary of slope stability analysis results

Pattle Delamore Partners Limited

TECHNICAL MEMORANDUM

G - North	Upper slope stability	1.5	1.994	1.2	1.994	1.1	1.496
G -	Global stability	1.5	1.779	1.2	1.692	1.1	1.249
South	outh Upper slope 1.5 stability	1.5	1.985	1.2	1.807	1.1	1.394

* Design horizontal seismic ground acceleration value of 0.15, applying a 1:1000 year return period event and allowing some movement of the gabion structure.

It is evident that all but four analyses achieve target values. Of the four which do not meet the criteria, the maximum deviation is 3.5% from the target value. Given the conservatism inherent in the analysis method, such a marginal non-compliance is very unlikely to affect the safety and stability of the retaining wall. Slope stability of the proposed solution is therefore considered satisfactory.

Gabion Stability

The proposed gabion structures were also checked for sliding, overturning and bearing failure. These analyses, presented in Appendix C; a summary of results is presented in Table 2.

Section	Degree of Utilisation (=Achieved FOS/Target FOS, %)						
	Overturning	Sliding	Bearing*				
Section B	22%	66%	13%				
Section C, North	15%	75%	23%				
Section C, South	15%	66%	26%				
Section D	10%	53%	13%				
Section G	5%	31%	14%				

Table 2:Summary of gabion static stability analysis results

*Assuming an allowable bearing pressure of 300kPa (rockfill)

The Degree of Utilisation (DOU) is well below 100% for all cases under static loading. The overall design is therefore considered satisfactory in terms of gabion sliding, bearing and overturning under static loading conditions.

In addition to static loading conditions, an assessment of the safety of the design in response to seismic loading was carried out. This assessment examined the critical case under static conditions (Section C, North), applying a design horizontal seismic acceleration coefficient of 0.15, as applied to the above slope stability analysis. Table 3 presents a summary of the results of the seismic analysis of the design at Section C (North):

Table 3: Summary of gabion seismic stability analysis results

Section	Degree of Utilisation (=Achieved FOS/Target FOS, %)							
	Overturning	Sliding	Bearing					
Section C, North, wall tilted at 6 degrees	83%	70%	99% (fail in eccentricity)					
Section C, North, wall tilted at 8 degrees	74%	60%	63%					

As shown, adjusting the gabion wall tilt to 8 degrees increases the DoU against bearing failure due to seismic loading to acceptable values. Therefore, a gabion tilt of 8 degrees is required in the vicinity of Section C (North), while a tilt of 6 degrees has been demonstrated to provide sufficient stability elsewhere.

Long term settlement

It is noted that the investigation encountered loose alluvial deposits up to 2 m below the existing stream bed level. Should some cohesive material be present below the stream bed, there may be a small risk of long term (post construction) minor settlement of the gabion structure. A typical measure to manage this risk would be to excavate this loose/soft material and replace with rockfill; however, the potential benefits of such a measure are likely to be outweighed by the risk of excavation inducing slope failure during construction.

Conclusions and Recommendations

Previous analyses have shown that the slopes at Waitangi stream are currently marginally stable, exhibiting an unacceptable Factor of Safety against long term movement or failure. A remedial solution incorporating rockfill, gabion walls and slope reinforcement has been proposed in order to provide adequate long-term safety and stability of the slopes.

The set of analyses outlined in this document have examined the suitability of these measures. These analyses have concluded that, subject to the conditions contained in this report, that the measures provide adequate safety against failure for both static conditions and for a 1/1000 year return period prescribed seismic loading.

The measures shall be constructed in accordance with Drawings T01552501; 201 - 207 and the specification. In particular, the contractor shall note the following:

- To minimise the risk of excessive long-term settlement of the gabion structures, it would be advisable to place the rockfill bedding (i.e. the raising of the stream bed) over the entire length of the scheme and then to allow some time for consolidation before construction of the gabion structures.
- Gabions shall generally be tilted at 6 degrees from horizontal; and 8 degrees from horizontal around Section C (north), the area of and almost vertical slope face.
- Backfill behind the gabions shall be placed in a sequential and layered fashion. Backfill lifts shall be placed in no more than 200 mm layers and shall be compacted prior to placement of the subsequent layer.
- The layers are to be compacted to achieve a CBR of 6%.
- The slope angle of backfill behind/above the Gabion baskets shall not exceed 1(v):2(h).
- Lightweight rock such as pumice shall <u>not</u> be acceptable as a filling material for Gabion baskets. Fill for the Gabion baskets shall be approved by the designer prior to construction.

This memorandum has been prepared by Pattle Delamore Partners (PDP) on the specific instructions of **Bay of Plenty Regional Council** for the limited purposes described in the memorandum. PDP accepts no liability if the memorandum is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

This memorandum has been prepared by PDP on the basis of information provided by Bay of Plenty Regional Council. PDP has not independently verified the provided information and has relied upon it being accurate and sufficient for use by PDP in preparing the memorandum. PDP accepts no responsibility for errors or omissions in, or the currency or sufficiency of, the provided information.

Appendix A: Calculations

PATTLE DELAMORE PARTNERS LTD solutions for your environment JO DA CALCULATE PEAK GROUND ACCELERT Amory = $C_{0,1000}$ $\overline{F.3}$ $\overline{F.3}$	WAITANOI STR BNO. TOISS2501 TE 22/01/18 ATION (PGA)	EAM 1/1 DESIGNED NK CHECKED MBIE; MOD I
CALCULATE PEAK GROUND ACCELERA $a_{max} = C_{0,1000} T.3 F_{3}$	BNO. TO1552501 TE 22/01/18	DESIGNED NK CHECKED MBIE ; MOD I
CALCULATE PEAK GROUND ACCELERA Amony = Co, 1000 T.3 Fg	TE 22/01/18	CHECKED MBIE ; MOD I
CALCULATE PEAK GROUND ACCELORA Amony = Co, 1000 T.3 Fg	TICN (PGA)	MBIE; MOD I
amor = Co, 1000 T.3 Fg		
$C_{0,1000} = U_{NWE1GHED} PGA, 100$	oes yr Even i	
= 0.32 (CLASS C)	5016)	
R = RETUDN PEPIDD FACTOR		N251170.5
= 1.3 (IMPORTANCE	LEVEL 2', Koos T	(a.)
amer = (0.38) × 1.3 × 133 g	,	
= 0.51 (1000 yr	RETURN PERIOD)	
= 0.39 (500 yr	RETURN PERLON)	
Design Honizontal Acceleration		
KE = AMAX Atoro Wa		Мвіє, Морисс 6
ATOP = 1.0 (NO CLIEP	6 2 30m)	
Wd = 0.3 (Case 6)		(TABLE LI. 1, S. 2) [MOUSE PILED - ALLOW SOME MOVEMENT]
Kn = (0.51 × 1.0 × 0.3)		EQUATION 51
= 0.15 EOR. 1/10	00 YR EVENT	
		1

DUDFIELD BRYCE

Appendix B: Gabion Check Outputs

GA	BION WALL DES	SIGN		pop
PROJECT NAME:	Vaitangi Stream Stabilisation		PROJECT	#: T015501
	Vaitangi Stream, Lake Tarawera	1	SECTION	Cross Section B
DESIGNED BY	loel J Kelly		CHECKED) BY
NOTES: S	Stability assessed in accordance by the NZ Building code	with the Load	l Factor Re	esistance Design Method as recommende
Pp YPp = d/3	Symbols	ng H s Input	$\delta - \omega$ F H/3 Units	Product P_{ra} Product P_{ra} Produ
Descriptions	Symbols	Values	Units	NOLES
Backfill slope angle above wall Angle of internal friction Wall friction reduction by geote Angle of wall friction Inclination angle to vertical plan Back of wall angle to horizontal Cohesion Surcharge Soil density Rock density Void in gabion Gabion density Actual height of wall Embedment Width of base Allowable soil bearing capacity	β Φ xtile fr δ ne ω I α C q γs γr v Yg H d B qa	27.000 36.000 33.000 24.120 6.000 96.000 0 5.000 19.635 20.500 20.000 16.400 2.088 0.000 1.5 300.000	。 。 。 psf kPa kN/m3 kN/m3 % kN/m3 m kN/m3 m kPa	< Φ Back of wall $\Phi(100-fr)/100$ for wall with straight back (no offsets) 90+ ω Ignore cohesion $\gamma r(100-v)/100$ (hCos ω) Corrected for inclination Om to ignore passive thrust
Retaining wall is:	SATISFACTORY		in overturn	ing 22%
	SATISFACTORY		in sliding	66%
	SATISFACTORY		in eccentri	city
	SATISFACTORY		in bearing	13%

LFRD PARAMETERS						
фbc	Resistance factor for bearing capacity	0.5				
φsl	Resistance factor for sliding	0.8				
фр	Resistance factor for passive earth pressure	0.5				
αG_stab	Load factor for self weight (stabilising)	0.9				
αG_desta	Load factor for self weight (destabilising)	1.2				
αEP_des	Load factor for earth pressure (destabilising)	1.5				

CALCULATIONS						
COULOMB'S THEORY						
BACK						
Active earth pressure	Ka	=			Sin²(α+Φ)	
coefficient			Sin ² α	Sin(α-δ)	1+ √ Sin(Φ+δ) √ Sin(α-δ)	$\frac{\sin(\Phi-\beta)}{\sin(\alpha+\beta)}^{2}$
					0 552	
			0.989	0.950	1+ √ 0.867 0.950	0.156 ² 0.839
			0.552			
			1.876	=	0.294	
Active soil thrust	Ps	=	0.5Kaγs	H²		
		=	12.609	kN/m3		
Active surcharge thrust	Da	_	Sing	KagH		
	гų	-	Sin(α+β)			
		=	0.995	3.075		
			0.839			
		=	3.646	kN/m		
Horizontal active soil thrust	Phs	=	PsCos(δ- ω)			
		=	11.984	kN/m		
Horizontal active surcharge thrust	Phq	=	PqCos(δ- ω)			
		=	3.465	kN/m	barallel comp	
Vertical active soil thrust	Pvs	=	PsSin(δ- ω)			
		=	3.922	kN/m	pen component	
Vertical active surcharge thrust	Pvq	=	PqSin(δ- ω)			
		=	1.134	kN/m		
<u>FRONT</u>						
Inclination angle to vertical	ωρ	=	0.000			
Front face angle to horizonta	Iαp	=	90 - ωp			
	0	=	90.000			
Backfill slope	βp Σ	=	0.000			
Angle of wall friction	Ор	=	0.000			
Passive earth pressure	Kp	=			Sin²(α-Φ)	
coefficient			Sin ² α	Sin(α+δ)	1- <u>Sin(Φ+δ)</u>	Sin(Φ+β) ²
					√ Sin(α+δ)	Sin(α+β)
					0.655	
			1.000	1.000	1- 0.588	0.588 2
					√ 1.000	1.000
			0.655			
			0.170	=	3.852	
Passive soil thrust	Pp	=	0.5Kpγs	ď²		
		=	0.000	kN/m		

Check Overturning:						
Vertical distance to Phs	Yhs	=	H/3-BSinω	=	0.539	m
Vertical distance to Phq	Yhq	=	H/2-BSinω	=	0.887	m
Overturning moment	∑Mo	=	(YhsPhs +	YhqPhq))*	αEP_destab	
			1.010	,		
		=	4.613	kNm/m		
Weight of Gabion	Wg	=	ΣA γg			
		=	41.164	kN/m		
Horizontal distance to Wg	Xg	=	Ysinω +	XCosω		
		=	0.939	m		
Horizontal distance to Pvs	Xvs	=	B/Cosω +	(H/3-BSind	ω)Tanω	
			1.565	m		
Horizontal distance to P_{Vq}	Xvq	=	B/Cosω +	(H/2-BSind	ω)Tanω	
			1.602	m		
Vertical distance to Pp	YPp	=	d/3			
		=	0.000			
Resisting moment	∑Mr	=	(Wg Xg)*αG_stab +	Pvs Xvs +	Pvq Xvq +	РрҮРр
		=	42.730	kNm/m		
Overturning factor of safety	SF₀	=	∑Mr	_		
			∑Mo			
			9.263	≥	2.000	0.K
Check Sliding						
Total Normal forces	ΣM	=	(WgCosω)*αG_stab +	(PsSinδ +	PqSinδ) -	PpSinω
		=	47.624	kN/m		
Frictional force	Ff	=	ΣW	*TanΦ	* φsl	
		=	47.624	0.727	0.800	
		=	27.681			
Total Resisting Forces	∑Fr	=	Ff + CosωPp			
		=	27.681			
Total Driving Forces at base	e ∑Fd	=	PsCosδ +PqCosδ)*αEF	-	NgSinω)*αG	
			18.382			
Siding factor of safety	SFs	=	ΣFr			
			∑⊢d			A • •
			1.506	≥	1.000	0.K

Check the Eccentricity of Ro (Resultant is in middle one thi	esul t rd)	tant Fo	orce				
Eccentricity	е	=	0.5 B	-	(∑Mr	∑W	Mo)
		=	0.750	-	0.800		
		=	-B/6	≤	е	≤	+B/6
			-0.250	≤ 0.K	-0.050	≤ 0.K	0.250
Check Bearing							
Applied bearing pressure	Ρ	=	ΣW B	(1±	6e/B)		
		=	31.749	(1±	0.201)	
Right		=	38.147	psf	≤	300.000	0.К
Left		=	25.352	psf	≤	300.000	0.К

G	ABION WALL DES	SIGN		pop
PROJECT NAME:	Waitangi Stream Stabilisation	F	PROJECT	#: T015501
LOCATION:	Waitangi Stream, Lake Tarawera	ı S	SECTION:	Cross Section C
DESIGNED BY	Noel J Kelly	C	CHECKED	BY
NOTES:	Stability assessed in accordance recommended by the NZ Building	with the Load	Factor Re	esistance Design Method as
Pp Pp Pp=d/3	Xvq Pvq β Xvq Pvs β Symbols	a H s Input	$rac{\delta-\omega}{H/3}$	H/2
Backfill slope angle above wa Angle of internal friction Wall friction reduction by geo Angle of wall friction Inclination angle to vertical pl Back of wall angle to horizon Cohesion Surcharge Soil density Rock density Void in gabion Gabion density Actual height of wall Embedment Width of base Allowable soil bearing capaci	all β Φ textile fr δ ane ω tal α c q γs γr v Yg H d B ty qa	27.000 36.000 33.000 24.120 6.000 96.000 0 5.000 19.635 21.666 15.000 18.416 3.083 0.000 1.5 300.000	o o o psf kPa kN/m3 kN/m3 kN/m3 m kN/m3 m kN/m3	< ϕ Back of wall $\Phi(100-fr)/100$ for wall with straight back (no offsets) $90+\omega$ Ignore cohesion $\gamma r(100-v)/100$ (hCos ω) Corrected for inclination Om to ignore passive thrust
Retaining wall is:	SATISFACTORY SATISFACTORY SATISFACTORY SATISFACTORY	iı iı iı	n overturni n sliding n eccentric n bearing	ing 15% 75% city 23%

	LFRD PARAMETERS	
фbc	Resistance factor for bearing capacity	0.5
φsl	Resistance factor for sliding	0.8
фр	Resistance factor for passive earth pressure	0.5
αG_stab	Load factor for self weight (stabilising)	0.9
αG_dest	a Load factor for self weight (destabilising)	1.2
αEP_de	s Load factor for earth pressure (destabilising)	1.5

BACK							
Active earth pressure coefficient	Ka	=	Sin ² α	Sin(α-δ)	$\sin^2(\alpha + \Phi)$ 1+ $$	Sin(Φ+δ) Sin(α-δ)	Sin(Φ-β) Sin(α+β)
					0.552		
			0.989	0.950	1+ √	0.867 0.950	0.156 0.839
			0.552				
			1.876	=	0.294		
Active soil thrust	Ps	=	0.5Kaγs	H²			
		=	27.477	kN/m3			
Active surcharge thrust	Pq	=	Sina	KaqH			
-			Sin(α+β)				
		=	0.995	4.539			
			0.839				
		=	5.383	kN/m			
Horizontal active soil thrust	Phs	=	PsCos(δ- ω)				
		=	26.115	kN/m			
Horizontal active surcharge hrust	Phq	=	PqCos(δ- ω)				
		=	5.116	kN/m	parallel com	р	
Vertical active soil thrust	Pvs	=	PsSin(δ- ω)				
		=	8.546	kN/m	pen compo	nent	
/ertical active surcharge hrust	Pvq	=	PqSin(δ- ω)				
		=	1.674	kN/m			
RONT							
nclination angle to vertical	ωр	=	0.000				
-ront face angle to horizontal	αρ	=	90-wp				
Backfill slope	ßn	=	0 000				
Angle of wall friction	δp	=	0.000				
Passive earth pressure	Кp	=			Sin²(α-Φ)		
coefficient	1-		Sin ² α	Sin(α+δ)	1-	Sin(Φ+δ)	Sin(Φ+β)
					I V	Sin(α+δ)	Sin(α+β)
					0.655		
			1.000	1.000	1- 5	0.588	0.588
			0 655		r V	1.000	1.000
			0.170	=	3.852		
Passive soil thrust	Pp	=	0.5Kpγs	d²			

Check Overturning:						
Vertical distance to Phs	Yhs	=	H/3-BSinω	=	0.871	m
Vertical distance to Phq	Yhq	=	H/2-BSinω	=	1.385	m
Overturning moment	∑Mo	=	(YhsPhs +	YhqPhq))	*αEP_destab	
		=	10.626	kNm/m		
Weight of Gabion	Wa	=	ΣΑ να			
<u> </u>	3	=	73.849	kN/m		
Horizontal distance to Wo	Χα	=	Ysinω +	XCosu		
	5-9	=	0.826	m		
Horizontal distance to Pvs	Xve	=	B/Cos(u) +	 (H/3-BSin	ω)Tanω	
			1.600	e Boin		
Horizontal distance to Pvg	Xva	=	B/Cosω +	(H/2-BSin	ω)Tanω	
			1.654	<u> </u>		
Vertical distance to Pp	ΥPp	=	d/3			
········	P	=	0.000			
Resisting moment	∑Mr	=	(Wg Xg)*αG_stab +	Pvs Xvs +	- Pvq Xvq +	РрҮРр
	_	=	71.360	kNm/m	· ·	
Overturning factor of safety	SFo	=	∑Mr			
			∑Mo			
			6.716	≥	1.000	О.К
Check Sliding						
Total Normal forces	ΣM	=	(WgCosω)*αG_stab +	(PsSinδ +	- PqSinδ) -	PpSinω
		=	86.949	kN/m		
Frictional force	Ff	=	ΣM	*TanΦ	* φsl	
		=	86.949	0.727	0.800	
		=	50.538			
Total Resisting Forces	∑Fr	=	Ff + CosωPp			
		=	50.538			
Total Driving Forces at base	e ∑Fd	=	PsCosδ +PqCosδ)*αEF	: <u>-</u>	NgSinω)*αG	
			38.039			
Siding factor of safety	SFs	=	∑Fr			
			<u>≻</u> ra	~	1.000	0.1
			1.329	2	1.000	U.K

Check the Eccentricity of F (Resultant is in middle one th	Resul t hird)	tant	Force				
Eccentricity	е	=	0.5 B	-	(∑Mr	∑w _	Mo)
		=	0.750	-	0.699		
		=	-B/6	≤	е	≤	+B/6
			-0.250	≤ 0.K	0.051	≤ 0.K	0.250
Check Bearing							
Applied bearing pressure	Ρ	=	∑W B	(1±	6e/B)		
		=	57.966	(1±	0.206)	
Left		=	69.906	psf	≤	300.000	0.К
Right		=	46.026	psf	≤	300.000	О.К

G	ABION WALL DES	SIGN		pop
PROJECT NAME:	Waitangi Stream Stabilisation	P	ROJECT #	t: T015501
LOCATION:	Waitangi Stream, Lake Tarawera	s S	ECTION:	Cross Section C
DESIGNED BY	Noel J Kelly	c	HECKED	ВҮ
NOTES:	Stability assessed in accordance recommended by the NZ Building	with the Load g code	Factor Res	sistance Design Method as
Pp YPp = d/3	Kg Wg B/Cosω B B Symbols	s Input Values	$\frac{\delta - \omega}{H/3}$	Notes
Backfill slope angle above wa Angle of internal friction Wall friction reduction by geo Angle of wall friction Inclination angle to vertical pl Back of wall angle to horizon Cohesion Surcharge Soil density Rock density Void in gabion Gabion density Actual height of wall Embedment Width of base Allowable soil bearing capaci	all β Φ textile fr δ ane ω tal α c q γs γr v Yg H d B ty qa SATISFACTORY SATISFACTORY	27.000 36.000 33.000 24.120 6.000 96.000 0 5.000 19.635 20.500 20.000 16.400 2.088 0.000 1.0 300.000 ir ir	o o psf kPa kN/m3 kN/m3 % kN/m3 m m kPa n overturnin n sliding	< Φ Back of wall $\Phi(100-fr)/100$ for wall with straight back (no offsets) 90+ ω Ignore cohesion $\gamma r(100-v)/100$ (hCos ω) Corrected for inclination 0m to ignore passive thrust ng 15% 66%
	SATISFACTORY SATISFACTORY	ir ir	ו eccentrici ו bearing	ty 26%

COULOMB'S THEORY					
BACK					
Active earth pressure	Ka	=			$Sin^2(\alpha + \Phi)$
coefficient			Sin ² α	Sin(α-ð)	1+ \int Sin(Φ+δ) Sin(Φ-β) \int Sin(α-δ) Sin(α+β)
			0.989	0.950	0.552
					√ 0.950 0.839
			0.552		0.304
			1.070	-	0.234
Active soil thrust	Ps	=	0.5Kaγs	H²	
		=	12.609	kN/m3	
Active surcharge thrust	Pq	=	Sina	KaqH	
-			Sin(α+β)		
		=	0.995	3.075	
			0.839		
		=	3.646	kN/m	
lorizontal active soil thrust	Phs	=	PsCos(δ- ω)		
		=	11.984	kN/m	
lorizontal active surcharge hrust	Phq	=	PqCos(δ- ω)		
		=	3.465	kN/m	parallel comp
/ertical active soil thrust	Pvs	=	PsSin(δ- ω)		
		=	3.922	kN/m	pen component
/ertical active surcharge hrust	Pvq	=	PqSin(δ- ω)		
		=	1.134	kN/m	
RONT					
nclination angle to vertical	ωр	=	0.000		
-ront face angle to norizontal	αρ	=	90-wp		
Backfill slope	βn	=	0.000		
Angle of wall friction	δρ	=	0.000		
Passive earth pressure	Kn	=			Sin²(α-Φ)
coefficient			Sin ² α	Sin(α+δ)	1- Sin(Φ+δ) Sin(Φ+β)
					$\sqrt{Sin(\alpha+\delta)}$ Sin($\alpha+\beta$)
					0.655
			1.000	1.000	$1 - \sqrt{\begin{array}{c} 0.588 \\ 1.000 \\ 1$
			0.655		1000
			0.170	=	3.852
Passive soil thrust	Рр	=	0.5Kpγs	d²	

Check Overturning:						
Vertical distance to Phs	Yhs	=	H/3-BSinω	=	0.592	m
Vertical distance to Phq	Yhq	=	H/2-BSinω	=	0.940	m
Overturning moment	∑Mo	=	(YhsPhs +	YhqPhq))*	αEP_destab	
		=	4.885	kNm/m		
Weight of Gabion	Wg	=	ΣA vg			
U U	U	=	41.164	kN/m		
Horizontal distance to Wo	Xa	=	Ysinω +	XCosω		
	5	=	0.759	m		
Horizontal distance to Pvs	Xvs	=	B/Cosω +	(H/3-BSin	ω)Tanω	
			1.068	m	,	
Horizontal distance to Pvo	Xva	=	B/Cosω +	(H/2-BSind	ω)Tanω	
	- 1		1.104	m	, -	
Vertical distance to Pp	YРр	=	d/3			
		=	0.000			
Resisting moment	∑Mr	=	(Wg Xg)*αG_stab +	Pvs Xvs +	Pvq Xvq +	РрҮРр
		=	33.575	kNm/m		
Overturning factor of safety	SFo	=	∑Mr			
			∑Mo			
			6.873	≥	1.000	О.К
Check Sliding						
Total Normal forces	ΣM	=	(WgCosω)*αG_stab +	(PsSinδ +	PqSinδ) -	PpSinω
		=	47.624	kN/m		
Frictional force	Ff	=	ΣW	*TanΦ	*	
		=	47.624	0.727	0.800	
		=	27.681			
Total Resisting Forces	∑Fr	=	Ff + CosωPp			
		=	27.681			
Total Driving Forces at base	∑Fd	=	PsCosδ +PqCosδ)*αEF	- -	NgSinω)*αG	
			18.382			
Siding factor of safety	SFs	=	∑Fr ∑Ed			
				~	4.000	0 //
			1.506	2	1.000	U.K

Check the Eccentricity of R (Resultant is in middle one th	esul t ird)	tant I	Force				
Eccentricity	е	=	0.5 B	-	(∑Mr	Σ <u>M</u>	Mo)
		=	0.500	-	0.602		
		=	-B/6	≤	е	≤	+B/6
			-0.167	≤ 0.K	-0.102	≤ 0.K	0.167
Check Bearing							
Applied bearing pressure	Ρ	=	∑W B	(1±	6e/B)		
		=	47.624	(1±	0.615)	
Right		=	76.891	psf	≤	300.000	0.К
Left		=	18.357	psf	≤	300.000	0.К

G	ABION WALL DES STATIC LOADING	SIGN		pop
PROJECT NAME:	Waitangi Stream Stabilisation	PR	OJECT #:	T015501
LOCATION:	Waitangi Stream, Lake Tarawera	SE	CTION:	Cross Section D
DESIGNED BY	Noel J Kelly	СН	ECKED BY	
NOTES:	Stability assessed in accordance recommended by the NZ Building	with the Load Fa	Pva Pva Pva Pva Pva Pva	Design Method as
Pp YPp = d/3	B/Cosω B B B B B B B B B B B B B B B B B B B	Input Values	Units Notes	H/2
Backfill slope angle above wa Angle of internal friction Wall friction reduction by geo Angle of wall friction Inclination angle to vertical pl Back of wall angle to horizont Cohesion Surcharge Soil density Rock density Void in gabion Gabion density Actual height of wall Embedment Width of base Allowable soil bearing capaci	all β Φ textile fr δ ane ω cal α c q vs γr v Yg H d B ty qa SATISFACTORY SATISFACTORY SATISFACTORY SATISFACTORY SATISFACTORY	27.000 36.000 33.000 24.120 6.000 96.000 0 5.000 19.000 k 20.500 k 20.500 k 20.000 16.400 k 2.088 0.000 1.5 300.000 in c in s in c in s in c		wall)/100 vith straight back (no offsets) ohesion)/100) Corrected for inclination hore passive thrust 10% 53% 13%

JOULOMB'S THEORY					
BACK					- 2(+)
Active earth pressure	Ka	=	Sin ² a	$\operatorname{Cim}(\alpha, \overline{\Delta})$	$\frac{\sin^2(\alpha + \Phi)}{1 + \sqrt{\sin^2(\Phi + \delta)} + \sin^2(\Phi + \delta)}$
coefficient			Sin ⁻ u	Sin(u-0)	$\int \sin(\varphi + \delta) = \sin(\varphi + \delta)$ $\int \sin(\alpha - \delta) = \sin(\alpha + \beta)$
			0.989	0.950	0.552
					√ 0.950 0.839
			0.552		
			1.876	=	0.294
Active soil thrust	Ps	=	0.5Kaγs	H²	
		=	12.201	kN/m3	
Active surcharge thrust	Pq	=	Sina	KaqH	
-			Sin(α+β)		
		=	0.995	3.075	
			0.839		
		=	3.646	kN/m	
Horizontal active soil thrust	Phs	=	PsCos(δ- ω)		
		=	11.596	kN/m	
Horizontal active surcharge hrust	Phq	=	PqCos(δ- ω)		
		=	3.465	kN/m	parallel comp
Vertical active soil thrust	Pvs	=	PsSin(δ- ω)		
		=	3.795	kN/m	pen component
√ertical active surcharge hrust	Pvq	=	PqSin(δ- ω)		
		=	1.134	kN/m	
RONT					
nclination angle to vertical	ωр	=	0.000		
Front face angle to horizontal	αр	=	90-ωp		
Backfill slopa	ይ~	=	90.000		
Angle of wall friction	чч ад	=	0.000		
	- 1-				24
Passive earth pressure	Kp	=	0.2	0. /	$\sin^2(\alpha - \Phi)$
coefficient			Sin ⁺ a	Sin(a+ò)	$1 - \int \frac{\sin(\Phi+0)}{\sin(\alpha+\delta)} \frac{\sin(\Phi+\beta)}{\sin(\alpha+\delta)}$
					0.655
			1 000	1 000	
			1.000	1.000	$\sqrt{\frac{0.300}{1.000}}$
			0.655		
			0.170	=	3.852
				_	
Passive soil thrust	Рр	=	0.5Kpγs	d²	

Check Overturning:						
Vertical distance to Phs	Yhs	=	H/3-BSinω	=	0.539	m
Vertical distance to Phq	Yhq	=	H/2-BSinω	=	0.887	m
Overturning moment	∑Mo	=	(YhsPhs +	YhqPhq))*	αEP_destab	
		_	1 61 3	k N		
Waisht of Ophian	10/-	_	4.015	KNIII/III		
vveight of Gabion	vvg	-	∑A yg			
		=	49.364	kN/m		
Horizontal distance to Wg	Xg	=	Ysinω +	XCosω		
		=	0.848	m		
Horizontal distance to Pvs	Xvs	=	B/Cosω +	(H/3-BSind	ω)Tanω	
			1.565	m		
Horizontal distance to Pvq	Xvq	=	B/Cosω +	(H/2-BSind	ω)Tanω	
			1.602	m		
Vertical distance to Pp	YPp	=	d/3			
		=	0.000			
Resisting moment	∑Mr	=	(Wg Xg)*αG_stab +	Pvs Xvs +	Pvq Xvq +	ΡρΥΡρ
		=	45.450	kNm/m		
Overturning factor of safety	SFo	=	∑Mr			
			∑IVIo			
			9.852	2	1.000	0.K
Check Sliding						
Total Normal forces	ΣM	=	(WgCosω)*αG_stab +	(PsSinδ +	PqSinδ) -	PpSinω
		=	55.621	kN/m		
Frictional force	Ff	=	ΣW	*TanΦ	* φsl	
		=	55.621	0.727	0.800	
		=	32.329			
Total Resisting Forces	∑Fr	=	Ff + CosωPp			
		=	32.329			
Total Driving Forces at base	∑Fd	=	PsCosδ +PqCosδ)*αEF	-	NgSinω)*αG	
			17.052			
Siding factor of safety	SFs	=	∑Fr			
			∑Fd			
			1.896	≥	1.000	О.К

Check the Eccentricity of R (Resultant is in middle one th	Resul t hird)	tant	Force				
Eccentricity	е	=	0.5 B	-	(∑Mr	Σ _M	Mo)
		=	0.750	-	0.734		
		=	-B/6	≤	е	≤	+B/6
			-0.250	≤ 0.K	0.016	≤ 0.K	0.250
Check Bearing							
Applied bearing pressure	Ρ	=	∑W B	(1±	6e/B)		
		=	37.081	(1±	0.063)	
Left		=	39.424	psf	≤	300.000	О.К
Right		=	34.738	psf	≤	300.000	0.К

G	ABION WALL DES	SIGN		pop
PROJECT NAME:	Waitangi Stream Stabilisation	PRO	OJECT #:	T015501
LOCATION:	Waitangi Stream, Lake Tarawera	SEC	CTION:	Cross Section G
DESIGNED BY	Noel J Kelly	CHE	ECKED BY	
NOTES:	Stability assessed in accordance recommended by the NZ Building	with the Load Fa	Pro	sign Method as → Pq → Pq → Phq ↓ Phq
Pp YPp = d/3	B/Cosω B/Cosω B B B B B B B B B B B B B B B B B B B	Input U Values	Jnits Notes	
Backfill slope angle above wa Angle of internal friction Wall friction reduction by geo Angle of wall friction Inclination angle to vertical pl Back of wall angle to horizon Cohesion Surcharge Soil density Rock density Void in gabion Gabion density Actual height of wall Embedment Width of base Allowable soil bearing capaci	all β Φ textile fr δ ane ω tal α α α α α α α α γ γ γ γ γ γ γ γ γ γ γ γ γ	27.000 36.000 33.000 24.120 6.000 96.000 0 5.000 H 20.500 Kl 20.000 16.400 Kl 1.094 0.000 1.5 150.000 Kl 1.5 150.000	 • Φ Φ(100-fr)/1 • • • • • • • • • • • • • • • • • • • • • • • • • • 	I 00 a straight back (no offsets) esion 00 corrected for inclination e passive thrust 5% 31%
	SATISFACTORY SATISFACTORY	in ea in be	ccentricity earing	14%

	LFRD PARAMETERS			
фbc	Resistance factor for bearing capacity	0.5		
φsl	Resistance factor for sliding	0.8		
фр	Resistance factor for passive earth pressure	0.5		
αG_stab	Load factor for self weight (stabilising)	0.9		
α G_desta Load factor for self weight (destabilising) 1.				
αEP_des Load factor for earth pressure (destabilising) 1				

COULOMB'S THEORY					
BACK					
Active earth pressure	Ka	=			$\sin^2(\alpha + \Phi)$
coefficient	r tu		Sin²α	Sin(α-δ)	$1 + \int \frac{\sin(\Phi + \delta)}{\sin(\alpha - \delta)} \frac{\sin(\Phi - \beta)}{\sin(\alpha + \beta)}$
					0.552
			0.989	0.950	1+ 0.867 0.156 0.950 0.839
			0.552		
			1.876	=	0.294
Active soil thrust	Ps	=	0.5Kaγs	H²	
		=	3.348	kN/m3	
Active surcharge thrust	Pq	=	Sina	KaqH	
-	•		Sin(α+β)	·	
		=	0.995	1.611	
			0.839		
		=	1.910	kN/m	
Horizontal active soil thrust	Phs	=	PsCos(δ- ω)		
		=	3.182	kN/m	
Horizontal active surcharge hrust	Phq	=	PqCos(δ- ω)		
		=	1.815	kN/m	arallel comp
/ertical active soil thrust	Pvs	=	PsSin(δ- ω)		
		=	1.041	kN/m	pen component
√ertical active surcharge thrust	Pvq	=	PqSin(δ- ω)		
		=	0.594	kN/m	
FRONT					
Inclination angle to vertical	ωр	=	0.000		
Front face angle to horizontal	αρ	=	90-ωp		
Backfill slope	ßn	=	90.000		
Angle of wall friction	бр	=	0.000		
Passive earth pressure	Kn	=			Sin ² (α-Φ)
coefficient	iχμ	-	$Sin^2 \alpha$	Sin(α+δ)	$1-$ Sin(Φ + δ) Sin(Φ + β)
				()	$\sqrt{Sin(\alpha+\delta)}$ Sin($\alpha+\beta$)
					0.655
			1.000	1.000	$1-\sqrt{\begin{array}{c} 0.588 \\ 1 000 \\ 1 000 \\ 1 000 \\ \end{array}}$
			0.655		
			0.170	=	3.852
Passive soil thrust	Рр	=	0.5Kpγs	ď²	

Check Overturning:						
Vertical distance to Phs	Yhs	=	H/3-BSinω	=	0.208	m
Vertical distance to Phq	Yhq	=	H/2-BSinω	=	0.390	m
Overturning moment	∑Mo	=	(YhsPhs +	YhqPhq))'	[*] αEP_destab	
		_	1.000	le Nimo (mo		
		-	1.062	KNM/M		
Weight of Gabion	VVg	=	<u>Σ</u> A γg			
		=	24.764	kN/m		
Horizontal distance to Wg	Xg	=	Ysinω +	XCosω		
		=	0.794	m		
Horizontal distance to Pvs	Xvs	=	B/Cosω +	(H/3-BSin	ω)Tanω	
			1.530	m		
Horizontal distance to P_{Vq}	Xvq	=	B/Cosω +	(H/2-BSin	ω)Tanω	
			1.549	m		
Vertical distance to Pp	YPp	=	d/3			
		=	0.000			
Resisting moment	∑Mr	=	(Wg Xg)*αG_stab +	Pvs Xvs +	Pvq Xvq +	ΡρΥΡρ
		=	20.208	kNm/m		
Overturning factor of safety	SF₀	=	∑Mr			
			∑Mo			
			19.021	≥	1.000	О.К
Check Sliding						
Total Normal forces	ΣW	=	(WgCosω)*αG_stab +	(PsSinδ +	PqSinδ) -	PpSinω
		=	26.803	kN/m		
Frictional force	Ff	=	ΣW	*TanΦ	* φsl	
		=	26.803	0.727	0.800	
		=	15.579			
Total Resisting Forces	∑Fr	=	Ff + CosωPp			
		=	15.579			
Total Driving Forces at base	e ∑Fd	=	PsCosδ +PqCosδ)*αEF	_	NgSinω)*αG	
			4.868			
Siding factor of safety	SFs	=	ΣFr			
			∑Fd			
			3.200	≥	1.000	0.К

Check the Eccentricity of Resultant Force (Resultant is in middle one third)								
Eccentricity	е	=	0.5 B	-	(∑Mr	Σw	Mo)	
		=	0.750	-	0.714			
		=	-B/6	≤	е	≤	+B/6	
			-0.250	≤ 0.K	0.036	≤ 0.K	0.250	
Check Bearing								
Applied bearing pressure		=	ΣW B	(1±	6e/B)			
		=	17.868	(1±	0.143)		
Left		=	20.419	psf	≤	150.000	О.К	
Right		=	15.318	psf	≤	150.000	О.К	

Appendix C: Slope Outputs

BAY OF PLENTY REGIONAL COUNCIL

180117_SLOPE STABILITY OUTPUTS DOCX

PATTLE DELAMORE PARTNERS LTD

180117_SLOPE STABILITY OUTPUTS DOCX

PATTLE DELAMORE PARTNERS LTD

BAY OF PLENTY REGIONAL COUNCIL

180117_SLOPE STABILITY OUTPUTS DOCX

180117_SLOPE STABILITY OUTPUTS DOCX

BAY OF PLENTY REGIONAL COUNCIL

BAY OF PLENTY REGIONAL COUNCIL

Appendix C Risk Register

Q	
0	
Q	

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM EROSION PROTECTION WORKS - DESIGN REPORT

Waita	ngi Stream Erosion Protection Risk Register				
Item	Description	Consequences	Mitigation Method	Likelihood	Risk owner
Geote	chnical				
Ч	Slope failure during construction.	Major hazard for workers.	 Safety in design measures. 	Low/Moderate	Contractor
		Potential failure of building foundation.	. Construction sequencing.		
			 Monitoring of slopes/failures. 		
7	Slope failure following construction.	Potential failure of building foundation.	 Geotechnical analysis and design. 	Low	Landowner/BOPRC/ PDP
m	Poor ground conditions/inadequate bearing capacity.	More work for the contractor resulting in	 Geotechnical investigation results provided to contractor. 	Low	BOPRC
		additional costs and time delays.	 Filling of streambed to provide foundation. 		
Naturi	ul Hazards (Erosion and Flooding)				
4	Gabion and rip rap solution not adequate for long term erosion protection in Waitangi Stream.	Continued erosion of streambed/streambanks.	 Full hydraulic engineering design of channel section in line with BOPRC hydrological and hydraulic guidelines. 	Moderate	BOPRC/PDP
ъ	Erosion occurring in other sections of the waterway not within scope of works.	Erosion of streambed/streambanks.	 Not accounted for in existing scope of works. 	Low	BOPRC
9	High flow/flood event(s) during construction interrupting construction programme.	Damage to partially completed works. Delay of completion. Additional	 Good environments control measures in place including erosion and sediment control plan. 	Moderate	BOPRC
		costs due to mobilisation of plant, re-work, site re- establishment.	 Ensure contractor has "dry area" well above channel for establishment of site and storage of equipment. 		
			 Include high flow/flood contingency planning in contract. 		

Q
0
Q

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM EROSION PROTECTION WORKS - DESIGN REPORT

Waita	ngi Stream Erosion Protection Risk Registe				
ltem	Description	Consequences	Mitigation Method	Likelihood	Risk owner
7	Significant flood event (in excess of design flood flow) damaging erosion protection	Erosion of streambed/streambanks.	 Beyond control for very large events. 	Moderate	BOPRC
	following completion.		 Can undertake more extensive works by altering scope. 		
			 Design is to BOPRC guidelines (20 year ARI event for erosion protection). 		
8	Erosion Downstream of works.	Erosion of streambed/streambanks.	 Engineered Drop Structure 	Low/Moderate	Landowners
Financ	sial & Delivery				
6	Health and safety risks during	Injury	 Safety in design 	Low	Contractor
	construction.		· Contractor selection		
			 Contract requirements 		
10	Insufficient funding resources to proceed with project in early 2018.	Delay in project delivery.	 PDP engineers estimate to be delivered to BOPRC prior to tender. 	Residual to be managed	BOPRC
			 Early discussion with selected tenderers required to determine likely costs. 		
11	Stream vanishes at low flow.	Ecological and aesthetic impacts.	 Weirs in streambank. 	Low	BOPRC
12	Difficulty sourcing necessary size and quality rock.	Additional cost.	 Conservative estimation of material costs. 	Low	BOPRC
13	Damage to private property during construction.	Financial liability.	 Delineation of contractors working area. 	Low	Contractor/BOPRC

0
0
Q

BAY OF PLENTY REGIONAL COUNCIL - WAITANGI STREAM EROSION PROTECTION WORKS - DESIGN REPORT

Waita	ngi Stream Erosion Protection Risk Registe				
ltem	Description	Consequences	Mitigation Method	Likelihood	Risk owner
14	Contractors' tender inflated prices due to nature of work/high demand during construction season.	Insufficient project budget resulting in project put on hold or taking longer to deliver.	 Beyond control. Review recent contract rates to assist in confirming budget. 	Residual to be managed	BOPRC
15	Programme delays owing to contractor performance/nature of work.	Possible additional costs and delayed completion.	 Select proven contractors. Tight contract administration. 	Moderate	Contractor
Consei	iting				
16	Resource consent is not granted for current design.	Additional time and costs associated with redesign, programme delays.	 Early consultation with resource consent authority. 	Low	BOPRC
17	Works not carried out as specified in design.	Potential for project failure.	 Ensure contractor reads and understands technical drawings and specifications. Inspect works when necessary. Keep in contact with contractor during construction. 	Low	Contractor

Appendix D Safety in Design Risk Register

		PROCEDURE NUMBER:	APPROVED BY:
ТІТІ С.	Cofotu in Dociga – Dociganos Idoutificad Unanado	F15.01 Form 01	ROB DOCHERTY
	agiety III Design - Designet Identified nazarus	DATE RELEASED:	REVISION NUMBER:
		16/11/2016	Rev B
Detaile			

Delalis	Project Name:	Project No.:	Nar	Prepared by: A. [Checked By: D. (Approved by:
	Waitangi Stre		me	Dean	Garden	
	am Erosion Protection		Date	8/02/2018	9/02/2018	

efinitions	
ef	Reference Number for each item
Hazard	An object, substance or set of circumstances with the
	potential to cause harm to personnel and/or the wider public
Design Control	Control measure employed by the Designer to eliminate,
Measure	minimise or control the risk

Activity	An identified activity associated with the construction work
Risk	Risk = <i>consequence</i> of hazard X <i>likelihood</i> of occurrence
Document Ref	Reference to additional documentation (e.g. tender dwgs or specifications) detailing the control
	measures

This Safety in Design Hazard assessment is to capture safety related hazards associated with the construction, commissioning, operation and maintenance of the proposed works. The identified hazards will be considered during the design process and appropriate mitigations will be included in the design and contract documentation where appropriate and described in the Design Report, as noted in the table below.

This Hazard assessment should not include other project hazards unrelated to personnel/public safety. Other non-health and safety related project hazards need to be identified separately in the Project Risk Register.

General H &S issues controlled by normal practices are not included in this assessment, e.g. hygiene hazards associated with working within a WWTP, working within an operational plant, standard construction risks etc. The Contractor should provide Risk Assessments (RA) and Method Statements (MS) for all high risk construction activities. Examples have been included in the following table as a guide. The example project around which this hazard assessment has been based is an underground wastewater pumpstation. The example has been prepared by the engineering design team (including both civil and electrical engineers) to specifically address electrical hazards throughout the 'life' of the structure.

Q
0
Q

Document Ref.	Drawings and specification including construction methodology	Drawings and specification including construction methodology	Specification including construction methodology	Specification including construction methodology	Specification including construction methodology	Drawings and specification	Specification	Specification
Residual Risk L M H	-	Σ	-	_	_	_	-	-
Design Control Measure	Positively identify all known services on drawings, specify pot-holing/service locations as part of construction works prior to work commencing.	Initial filling of streambed to improve stability, no undercutting of streambanks, monitoring of slopes required during construction	Contractor to provide construction methodology and health and safety plan to be approved by the Engineer, Gabions to be placed empty.	Contractor to provide construction methodology and health and safety plan to be approved by the Engineer, Gabions to be placed empty.	Contractor to monitor weather forecast and maintain contact with BOPRC operations staff on Okareka discharge. Planning for mobilisation of site.	Contractor to secure site including appropriate signage.	Specified set-back from top of slope for machinery.	Contractor to provide construction methodology and health and safety plan to be approved by the Engineer.
Initial Risk L M H	Σ	Ŧ	Ŧ	I	τ	Σ	±	Σ
Likelihood	Medium	Medium	High	Low	Medium	Low	Medium	High
Consequence	Electric shock, death	Entrapment, personal injury, death	Strain injury, machinery overturning	Personal injury, death	Personal injury, death	Personal injury, death	Personal injury, death	Personal injury
Hazard Description	Strike unmarked existing buried electrical services	Slope failure	Accident or injury from moving materials under site constraints (steep, narrow, labour intensive, small machinery only)	Falling material	Fast moving water	Construction site hazards	Slope failure	Slippery steep and uneven ground in streambed
f	Construction Excavation and below ground construction	Works at the base of streambank slopes	Transport of materials on site	Overhead lifts	Flooding	Excluding public and residents	Machinery at top of slope	Slips/trips/falls
Ř	1.1 1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8

N:\Health_and_Safety\Health and Safety Policy\Safety in Design - Designer Identified Hazard Register_DRAFT3 Safety in Design - Designer Identified Hazards Revision B, November 2016

Page 2

1.9	Transport of materials on site	Accident or injury from moving	Strain injury, machinery	High	Contractor to provide construction	_	Specification including
		materials under site constraints	overturning		methodology and health and safety plan to		construction
		(steep, narrow, labour intensive,			be approved by the Engineer, Gabions to		methodology
		small machinery only)			be placed empty.		
3. M	laintenance Works						
3.1	As per construction hazards and cor	ntrols					

N:\Health_and_Safety\Health and Safety Policy\Safety in Design - Designer Identified Hazard Register_DRAFT3 Safety in Design - Designer Identified Hazards Revision B, November 2016

Appendix E Hydraulic and Hydrologic Calculation Sheets

500 L/s Flov	v from Okar	eka plus 100 l	./s Baseflow													
	Cross						Flow D	epth							Froude #	#
<u>Reach</u>	<u>Section</u>	River Sta	<u>Profile</u>	Q Total (m3/s)	Min Ch E (m)	<u>I W.S. Elev</u> (m)	(m)	Crit W (m)	<u>.s. E.G. El</u> (m)	<u>E.G. S</u> (m/m)	lope Vel (m/s	(n In	ow Area 12)	Top Width (m)	R	
DS of ROW			80	Inl Struct												
DS of ROW	A		45 PF 1		0.6 3:	10.4 310.	.73	0.33	(T)	10.79	0.0064	1.04	0.58	1.7	7	0.58
DS of ROW		41.000*	PF 1		0.6 31(0.37 310	0.7	0.33	. (7)	10.76	0.0070	1.08	0.56	1.	7	0.6
DS of ROW		37.000*	PF 1		0.6 31(0.33 310.	.66	0.33	(1)	10.73	0.0078	1.13	0.53	1.6	4	0.63
DS of ROW	в		33 PF 1		0.6 3.	10.3 310.	.55	0.25	310.55 3	10.68	0.0199	1.56	0.38	1.5	5	1
DS of ROW		29.000*	PF 1		0.6 31(0.25 310.	.43	0.18	310.46 3	10.57	0.0324	1.7	0.35	2.0	4	1.3
DS of ROW	U		25 PF 1		0.6 3:	10.2 310.	.45	0.25	310.38	310.5	0.0063	0.94	0.64	2.5	5	0.6
DS of ROW		20.000*	PF 1		0.6 31(0.17 310.	.43	0.26	(1)	10.47	0.0049	0.84	0.71	2.	8	0.53
DS of ROW	D		15 PF 1		0.6 31(0.15 310.	.33	0.18	310.33 3	10.42	0.0186	1.33	0.45	2.5	4	1.01
DS of ROW	ш		10 PF 1		0.6	310 310.	.14	0.14	310.18 3	10.28	0.0377	1.66	0.36	2.5	8	1.4
3.0 m³/s Flo	od Flow - 20) vear ARI Eve	nt Incl. Climat	te Change												
	Cross						Flow D	epth							Froude #	#
<u>Reach</u>	<u>Section</u>	River Sta	<u>Profile</u>	<u>Q Total</u> (m3/s)	Min Ch E	<u>I W.S. Elev</u> (m)	<u>(m)</u>	Crit W (m)	<u>(m)</u>	<u>E.G. S</u> (m/m)	lope Vel (m/s	s) (n	ow Area 12)	Top Width (m)	<u>en</u>	
DS of ROW			80	Inl Struct												
DS of ROW	A		45 PF 1		ω. Έ	10.4 311.	.41	1.01	(1)	11.52	0.0041	1.49	2.2	2.9	3	0.48
DS of ROW		41.000*	PF 1		3 31(0.37 311.	.32	0.95	. (1)	11.49	0.0082	1.82	1.65	1.8	4	0.61
DS of ROW		37.000*	PF 1		3 31(0.33 311.	.25	0.92	(1)	11.45	0.0101	1.96	1.53	1.7	9	0.67
DS of ROW	в		33 PF 1		3.	10.3 311.	.03	0.73	311.03	11.38	0.0219	2.62	1.15	1.6	5	1.01
DS of ROW		29.000*	PF 1		3 31(0.25 310	0.7	0.45	310.85 5	11.24	0.0436	3.24	0.93	2.	1	1.56
DS of ROW	U		25 PF 1		3.	10.2 310.	.88	0.68	310.72 5	11.03	0.0076	1.71	1.75	2.6	5	0.67
DS of ROW		20.000*	PF 1		3 31(0.17 310.	.87	0.7)	10.99	0.0057	1.53	1.96	2.	6	0.59
DS of ROW	D		15 PF 1		3 31(0.15 310.	.67	0.52	310.67 3	10.93	0.0168	2.25	1.33	2.6	1	1.01
DS of ROW	ш		10 PF 1		m	310 310.	.43	0.43	310.52 3	10.81	0.0295	2.72	1.1	2.5	6	1.33

1.33

4		JOB NAME	PAGE No.
C	PATTLE DELAMORE PARTNERS LTD solutions for your environment	JOB NO. TO 18557 501	DESIGNED JG
		DATE 1/12/17	CHECKED AD
(from Bay Xalorer	Total Catchment area = 260,00 upstream of Waitengi Bay Right Area of: - Bush = 230,000 m - Road = \$,000 m ² - lasture = 25,000 m	20 m ² (260 ha) 65 way curvet 26 ha - (incl. all impermeab) 2 6,000,000 ha le surfaus)
(IIS Software)	Proportion of: $-Bush = 0.88$ -Road = 0.02 -Pasture = 0.10		
	Additied Rational Method		
C	Using SMAP Online -> Soil type	: Well drained Loan	n to rapiel permeability
7 6.	: use high soakage gravel, so	andy & volcanic soil	types
	From table 5.2 of BOPRI	C 11/12 Guidelines	2012 Noulic
	Bush: $C = 0.15$ Road: $C = 0.9$ Pasture: $C = 0.2$		
	$C_{\text{weighted}} = (0.88 \times 0.15) +$	$(0.02 \times 0.9) + (0.00)$	1 × (0.7)
	= 0.17		
	Assume stope 5-10% ((no adjustment for st	ope)
C	include effect of stope: 5	5=0.2 -> C=0.	17+0.1=0.27
	4p - 360 (eq. from Guudelaus 11/12 	BOPAC) $\frac{113e}{770} = \frac{214}{770} = 0.7$ 214 (Height drop) 770 (Direct length)	28 (from pg. 2)
	I = ? From HIRDS,	(T=Syr)	(T=20yi) $(T=50yi)$
	(Rainfull depth =	2011.001)
	T= 5 gr. Theosity =	,)
	ART		
	1=20 Jr Junt =		
ζ_{-}	pepth =		<u> </u>
	1= 30gr (Int. =		
			DUDFIELD BRYCE

		ORE PARTNERS ITD	JOB NAME		PAGE No.
	solutions for your en	vironment	JOB NO. TO 1955250	DESIGNED JG	
_			DATE 1/12/17	CHECKED AD)
	Find I				
	For 20%. AE	, 5%. AEP, 2	2 ×. AEP (T= 5,	20,50yr)	
	Puration = + c	,			
	to -> 11/10	Bransbu- Wil	liams Method #	check IN US	Soil
	i constant	inservation ser	vice (from TME		
	$B = W M Clines}{Fc} = 0.9$	5321.2	A 2001 2	211	
	A	H 0.2	A = 260 km H = 529 - 3	15 = 214 m	
	= 0.9	53 x 770	L = 770 m (lonaes	t straight line	distance
	- 0	127 hrs (137x60 from	outlet to can	tchment
			S 22 min	pe)	
	check using	NS 2011 Conser	varion service		
	$T_c = \left(\begin{array}{c} 0.8 \\ - \end{array} \right)$	$\frac{s+(r)}{r}$	Kirpi	ich i TP	Kamer-
	= /0.9	87×0.773)0.	385 (mit)	min Result	s are OK
		214	0.089 × 60	Note not	min
	= 0.	089 hrs	= 5,34 min	17108 acc	outs
	Both less the	an smallest dur	ation on HIRDs	directly (b	y w).
	i. use c	iluration = 10	mins (smallest)	(rec Draning	* T × A]
F	Tom HIRDS			2 360 E	dicites
	AEP	T (mm/	(hr) C	Rp (m ³ /s) (Tc	= forin
	207	79.7	1	× 0.27 × 79.2 ×	26 \$
	E VO		50	$= 1.54 \text{ m}^{3/2}$	5
	54		1	1001	9 - 76
	±+.),	2:0°C => 127.2	36	$= 2.14 \text{ m}^{-1.04}$	3/5
	27	125	1	= 2.4%	5×76
			36	0 - 7 67	
				- 2.05	
					DUDFIELD BRY

PAGE No. JOB NAME 3 PATTLE DELAMORE PARTNERS LTD solutions for your environment 00 JOB NO. TO1552501 DESIGNED Ja CHECKED AD DATE /12/17 Try duration = 30 min From HIRDS $Q_{e}(m^{3}/s)$ I (mm/hr) AEP 46.6 20% 0.91 64.6+CC = 74.4 5%. 1.26 79.2 1.54 27. Try duration = 60 min From MIRDS $Q(m^3/s)$ I (mm/hr) AEP 333 20%. 0.65 57. 46.1+cc = 52.90.9 56.6 1.10 2% Base How estimated to range from 5-> 30 45 (BOPRE Elology report). Design outflow from Lake Okareka is 2.48 m3/5 + 0.5 m3/5 + 0.03 M/5 = 3.01 m3/5 1.45 m3/s + 0.5 m3/s + 0.03 M/s = 1.98 m3/s So flow is likely to be in the 2-3-3/s range for a 20 year event aller the pipeline is operational a allowing for CC effects. DUDFIELD BRYCE

Design of Drop Structure

Project Name: Project Number:	Waitangi Strea T01552501	m Erosion Protection
Designed by and on: Checked by and on:	97 T	24/01/2018 30/01/2018

DESIGN GUIDELINE: Hydraulic Engineering Circular No. 14, Third Edition Hydraulic Design of Energy Dissipators for Culverts and Channels, Chapter 11

KEY OUTPUTS		
For a straight drop structure with blocks and an end sill,		
Length of each basin	a.02 m	-
Height from crest to bottom of each basin $h_{0^{-1}}$	= 1.50 m	_
Sill heights	0.19 m	_
Block heights	0.37 m	_
Block width and spacing	0.19 m	_
Length between first sill and second drop	3.00 m	_
Use Design 2 as it inlcudes a sill (which allows sediment to further downstream)	collect and not	be carried

Acceleration due to gravity From Sheet 1 (Design 1), Unit discharge

Design of Straight Drop Structure (with floor blocks and an end sill)

- Step 1. Estimate the elevation difference required between the approach and taliwater channel, h. This may be to address a drop at the outlet of a cuivert resulting from erceston or headuring or it may be to flatten a channel to a series of subcritical slopes and drops. The design procedure for the straight drop structure may be summarized in the following steps.
- Step 2. Calculate normal flow conditions approaching the drop to verify subcritical conditions. If not subcritical, repeat step 1.
- Step 3. Calculate critical depth over the weir (usually rectangular) into the drop structure. Calculate the vertical dimensions of the stilling basin using Equations 11.7 through 11.3
 - Step 4. Estimate the basin length using Equations 11.10 though 11.16. Step 5. Design the basin floor blocks and end still. Step 8. Design the basin exit and entrance transitions.

11-8

For a rectangular weir and assuming approximately rectangular upstream and downstream channel Assume crest length is same as the average channel width

(assumption for rip-rap roughness - Page 8-A-6 of ODOT Hydraulics Manual Appendix A) (after providing for drop)

Drop 1

Step 1 : Elevation difference required between the approach and tailwater channel (h) 1.05 m =4 Height of each drop

Step 2 : Normal flow conditions approaching the drop to verify subcritical conditions

Use Mannings equation to find $\ensuremath{\textbf{y}}_0$

Guess y₀

 $Q=\frac{1}{n}Am^{2/3}S^{1/2}$

0.55 m

Final Check of Design Limits

The recommended design is limited to the following conditions:

- 1. Total drop, h_{o} , less than 4.6 m (15 ft) with sufficient tallwater.

pg 11-6

Use same dimensions for drop 2, with 3m length between sill of first basin and crest of scond drop (to allow normal flow conditions to resume.

Drop 2

